
Muhammad Hilman Beyri (mbeyri), Zixu Ding (zixud)

Parallel Computer Architecture and Programming

Final Project

Summary
We have developed a distributed interactive ray tracing application in OpenMP and SIMD on the CPU

and in CUDA on the GPU in a heterogeneous cluster.

Background
In computer graphics, ray tracing is a technique for generating an image by tracing the path of light

through pixels in an image plane and simulating the effects of its encounters with virtual objects. As

such, ray tracing is able to simulate necessary effects to create photorealistic images. However, a high-

quality ray tracing can take very long time to render, and is not suitable for real-time applications.

Essential operations in ray tracing, such as intersection tests, transformations, vector math and shading

are all data-parallel operations, and therefore are SIMD friendly. Making use of SIMD processors like

GPU or CPU SIMD instructions can immensely improve the speed of ray tracing.

Many computers nowadays have both CPU and GPU installed. However, most of the time they are idle

or poorly utilized. This presents a potential performance improvement if we can parallelize ray tracing

application using both CPU and GPU.

With the advent of cloud computing, it is possible to access massive computing resources without

actually purchasing them. Even GPU computing instances have become available in the past few years.

Because of this, we can also parallelize over multiple connected computers to further increase

performance of ray tracing application.

Different performance characteristics on CPU, GPU, and network make workload imbalance the major

obstacle of parallelization. In order to balance the workload, we need to use an adaptive load balancing

algorithm. This algorithm will then assign the work load of each node accordingly.

The system is implemented using master slave architecture. User directly controls the master

application and master will assign work to slaves. Slave receives work from master, does the work in

CPU using OpenMP or SIMD or in GPU using CUDA. Once the work finished, slave sends back the result

back to master which then will stitch back together the image sent by all the slaves. Master would also

need to adjust the workload to better match the slave’s computing capability to better balance the

workload.

Approach
We are using OpenMP and SIMD instruction for CPU, CUDA for GPU, and Boost Asio for networking. We

are targeting linux machines.

Ray tracing algorithm essentially is about shooting rays from each pixel. The rays from different pixel is

completely unrelated and therefore would be a perfect way to parallelize in GPU which has a very wide

vector width SIMD architecture. Each pixel would be handle by one CUDA thread. Moving computation

to GPU make ray tracer application goes faster than in CPU. CPU itself nowadays contains multiple cores.

Computing some part of the image using multiple threads and using vector instruction in multi-core CPU

would also potentially helps. Loop iteration for all the pixels could be distributed among multiple

threads.

Load balancing algorithm is needed in order to match workload with a component’s computation power

and network latency. We model slave’s response time as addition of network latency and rendering

time. Based on slave’s response time data that master collects every frame, we can have an idea of both

slave’s computation power and network latency / data transfer. Based on these data, we can then assign

workload to slave as a function of network latency and rendering time.

We made a pool game as a ray tracing application. User can move around and control a white ball. The

ball can roll and collide with each other. We chose to make this game because it is simple, easy to

understand and let us concentrate on the parallelization, and also, of course, because we love pool

game.

Master and slave needs a way to communicate. We are using Boost Asio, a networking library part of

boost. Master holds multiple TCP connection with the slaves. The responsibility of master is to divide the

work among the slaves and give enough information to the slaves so that the slaves know what to

render. Based on that, we implemented a structure that holds information of all the balls data, camera

data, and image part data that slave needs to render. Slave receives this structure, sets up the scene

described structure, and render the image part that master asked. After rendering finished, slave sends

back the image part, along with any useful information like rendering time. Master receives the image

part from the slave, and once it has received all part of the image from other slave, it stitches all parts of

the image and display it to the user. Aside from the image part, master also collects useful statistics

from slave’s message such as average response time, average network latency, rendering time, etc. This

data then is used by master to determine the workload for next frame. Because of the way it works, it is

possible that master determines no workload for a certain slave. This could be caused by long response

time from the slave.

We started with existing ray tracer code from CMU’s Computer Graphics class. It is using CPU and

OpenMP.

Results
We tested our project mainly on GHC cluster machines and latedays. The application’s screen dimension

is set to 768 x 576. The application runs on linux.

CUDA Ray Tracer
We implemented CUDA Ray tracer. It supports specular, reflection, and shadow. CUDA Ray tracer

achieves 174x speedup over single threaded CPU implementation on latedays.

SIMD Ray Tracer
We implemented SIMD Ray tracer. It supports the same features as in CUDA. The SIMD Ray tracer using

AVX instruction achieved 2.5x speedup compared to single threaded CPU implementation. Using

OpenMP to add threading boosted the performance 11.4x speedup. SIMD and CPU are tested on

latedays machine.

Distributed Ray tracer
We implemented distributed ray tracer. We achieved 15-20 fps with 5 slaves using GHC41, GHC45,

GHC26, GHC30, and GHC46. We achieved ~1 fps with 5 SSE SIMD slaves on the same computers. We

achieved

Load Balancer
We implemented load balancer algorithms.

 Equal Division

In the beginning of the program, for a certain number of frames, master will divide the workload

equally to all nodes. This is because master does not yet know anything about the connected

slaves. After certain number of frames, master then started to divide the work dynamically.

 Naïve Division

This algorithm will simply give bigger workload to node with smaller response time. This

algorithm is not stable. The response times could vary wildly based on current frame’s sudden

network latency hike.

 Naïve Mean Division

This is our earliest try of implementing load balancer. We end up not using this. This algorithm

will simply give bigger workload to node with smaller response time. It achieves better response

time in a heterogeneous setting compared to equal division.

 AB Division

Instead of just using the response time to determine the workload, we model the workload as a

linear function of network latency and rendering factor. This function model the relationship

between workload and response time more accurately. Rendering factor is the result of dividing

known rendering latency by the known workload. The network latency and rendering factor are

averaged since the first frame.

The goal of AB Division is to better reduce the standard deviation of all slave’s response time. A

minimal standard deviation illustrates a better workload balance which usually leads to better

performance. This algorithm runs in O(n) time.

We tested these three algorithms on five slaves, GHC41, GHC26, GHC45, GHC30, and GHC46.

Here is the standard deviation comparison of the three algorithms:

The standard deviation at frame i is the standard deviation of all the slave’s response times in

that frame. As you can see from the chart, AB division has the lowest standard deviation as

expected. We speculated the network hiccup that happens on naïve and AB is caused because

we were sending too fast and perhaps the network buffered our messages sometime in

between.

Next, we compare the maximum response time of all three algorithms:

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 50 100 150 200 250 300 350 400

Standard Deviation

AB naïve equal

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

Maximum Response Time

AB naïve equal

The maximum response time at frame i is the maximum of all slave’s response times in that

frame. As you can see from the chart, AB division has the lowest maximum response time as

expected.

We decided not to use image compression to send the image back to master. On closer look of

the response time, the network latency in average, takes about 3 millisecond. The fastest image

compression, using jpeg-turbo, takes about the same time to compress.

Equal work was performed by both project members

